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Abstract. The operation safety of depressurizing a high-pressure gas-filled vessel is of crucial importance in
petroleum, chemical and biological processing industries. The present study describes a simple model of a slow
depressurization process and derives its anaytical solution in a recurrence form. This analytical solution is
expected to be useful for engineering applications and for the assessment of either detailed numerical smulations
or experimental data.
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1. Introduction

Large steel vessels are often employed in processing industries to contain high-pressure
hydrocarbon gaseous mixtures. The pressurized gas may be frequently depressurized to meet
the demand of an industrial process. During depressurization, the fluid temperature decreases
due to the enthalpy loss with the flow discharging. The decrease of the fluid temperature
will provoke heat-transfer processes from the vessel wall to fluid, resulting in the vessel wall
temperature decreasing and the fluid temperature recovering. This conjugate heat-transfer
process may be quite complicated. A potential safety issue must therefore be taken into
consideration i.e. whether or not the wall temperature would decline below the ductile-brittle
transition temperature of the steel from which the vessel is made, to threaten the integrity of
the vessel.

Regarding the depressurization of a high-pressure vessel filled with a certain type of
industrial gaseousfluid, there are two problems of particular interest. Thefirst oneistherapid
depressurization process or the blowdown dueto the partial failure of thevessel. The blowdown
problem and the related thermal-hydraulic behavior have been extensively investigated in the
nuclear industry (e.g. Levy [1], Moody [2]). There are also many studies in other industries
(e.g. Kim[3]).

Thesecond problem isrelated to aslow and continuousrel ease or discharge of the contained
substance because of an isolated valve failure or even under normal discharging operation
conditions. This slow depressurization is less dangerous than the rapid one, so that it is also
lessinvestigated. Xiaet al. [4] presented a semi-empirical approximation based on alumped-
parameter model and a data-fitting method. Their approach is basically non-mathematical
and gives no error bounds. Xia et al. [5] also proposed an analogue in which a constant
uniform volumetric heat sink in fluid is employed to simulate the enthalpy loss during slow
depressurization of such a vessdl. In this second paper they gave an analytical solution of
the problem and compared this to a 2-D numerical ssmulation by the thermal-hydraulic code
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Figure 1. A typical high-pressure gas-filled vessel.
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ASTEC [6]. However, their heat-sink analogue is irrelevant to the depressurization due to
mass release. Thus, thorough investigation of the potential of analytical solution techniquesis
still necessary to be carried out.

The present paper employs a simple mathematical model to describe the slow depressur-
ization process of a high-pressure gas-filled vessel and gives its analytical solution. Some
aspects related to assess mathematical models and their solutions are discussed. A criterionis
derived for the prevention of the ductile-brittle transition of the wall material.

2. Mathematical modeling

Figure 1 depicts a typical gas-filled vessel. The vessel initialy contains My kilograms of
pressurized gas at temperature Ty and pressure Py.! The vessel wall is assumed also to be
initially at temperature Tp. The depressurization processis started by a release of gas through
a valve with a constant discharge flow rate mqy. Because the main concern is whether or
not the wall temperature falls below a critical value, Tgit, so that properly modeling the
vessel-wall-temperature transient, rather than the details of the fluid flow behavior inside the
vessd, is of prevailing importance. The dominant heat-transfer mechanism in this type of gas
depressurization is natural convection (Hague et al. [7]). Thus, the heat-transfer coefficient
between the vessel wall, and the contained fluid is expected to be small. The Biot nhumber, the
ratio of the heat transfer to the fluid vs. the heat conduction inside the wall material, is aso
small. A small Biot number impliesthat alumped parameter model can be applied to describe
the energy balance of the vessel wall and the fluid.
The basic assumptionsin the present study include:

1. The thermodynamic properties C,, ., Cy, f, Cy, y @nd p,, are constant;

! For definition of symbols see nomenclature at the end of the paper.
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2. Kinetic and potential energies of the fluid are ignored;
3. The heat-transfer coefficients are all assumed constant;
4. The mass-dischargerate is assumed constant during depressurization.

Although the heat-transfer coefficients may change with time, it s still acceptable to use the
time-averaged heat-transfer coefficients to describe the average behavior of the conjugate
heat transfer if all heat-transfer coefficients do not experience drastic changes. The numerical
simulation with the ASTEC code (Xia et al. [5]) has shown that in case of the heat-sink
driving natural convection, the constant heat-transfer coefficient assumption isfairly good for
modeling the temperature transients with alumped parameter model.

According to the above assumptions, the energy balance equationsfor both the vessel wall
and the fluid can now be written down as:

for the fluid:

dE :

S = cwdn(Tu) — (Ty)) — Bow, @
for the vessel wall:

dE,,

Tdt —ayAp((Tw) — (Tf)) + oo AH,00(Too — (Tw)), @)

where the total energy of the contained fluid, £ (¢), and that of the vessel wall, £, (t), are
defined as below, respectively,

Ef(t):/v Co o7 (1T (L, 1) AV )
f
and

Ey(t) = /V Cpraopu Lo (t,1) Vs @)

Moreover, the following average temperatures are defined for establishing a closed form of
the lumped-parameter model.

fo Cv,fpf (t, r)Tf (t,r) de

Te) = 5
) Jv; Cogps(t,r) dVy ©
and
Jv. CpwpuwTw(t,r)dVy,
(Ty) = " : (6)
wa Cp,wpw de
The fluid mass balance reads:
M) = [ pr(t.0)dVy = (p)Vy = Mo = it ™
f
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where the average fluid density is afunction of time only and defined by

_ s AV M)

= 8

(py T, 4V 75 8)
whichyields

Ef(t) = Ou,fo(t)<Tf> and Ey(t) = Op,wa<Tw>- ©

The summation of Equations (1) and (2) gives:

dE;  dE, :

According to the second assumption, the energy release rate Eqy can be approximated as,
Eout = mouCp, fTow(t), (11)
where Ty iSthe temperature at the exit of the valve. Theinitial conditions are,
(T'y(0)) = (T¥(0)) =Tp and Ty, = Const. (12

The above mathematical system defined by Equations (1), (2), (7), (9) and (11) is not a
closed system yet. Another physical constraint must be added to specify Toyi(¢). In alumped-
parameter model, we can always correlate Toy(t) with (T') by imposing a profile function,
so that

Tou(t) = Co(Ty), (13)

where constant Cy takes into account the axial distribution of the fluid temperature. The
condition Cy = 1 correspondsto aflat profile.

Thepresent model in principleisvalid only for slow depressurization, implying C,, sTout >
%ugm. However, the simplification with Equation (13) enables the present model to include
the kinetic energy of the released massif it can be rated to the enthalpy loss as

Sugw = Ck Cp 1(Ty), (14)

where C is adimensionless coefficient. For agaseousfluid, 0 < Cx < 3(C, ¢/C, § — 1),
which is the sonic velocity limitation. By adding the kinetic energy term CrrivoutCp, ¢ (T'r)
into the energy release rate Eout(t) shown in Equation (11), we obtain

Eom(t) = Cout’moutcp,f (Tf>7 (15)
where Cot = Ck + Cp should be dlightly bigger than one. If the slow depressurization is
emphasized, Cot = 1isnot only physically reasonable, but also mathematically convenient

without loss of generality. The model described above is called the direct mass-discharge
model.
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3. Analytical solution

An analytical solution for the above model exists under the imposed physical assumptions.
By substituting Equations (7), (9) and (15) in Equations (1), (2) and (12) and making them
dimensionless, one obtains the following governing equations:

49w _ _ <T_m_|_T_m> Op+ 10 + MO, (16)
dr Tw  Too Tw Too
dO; 7, Oy Tm  Cpr O©f
N —\ -, tg  Cou—1 17
dr Trl—1 Tf+Cu7fCOUt 1-7’ (17)
T
7=0, 040 =60 =1, O = T = Const, (18)
0

where the time constants are defined as:

M M M M
r= 0 MG MyoCuy  MuChw g
Tout awApn awApn Qoo AH,00
and the definitions of all dimensionless parameters are:
<Tw> (Tf> t
Oy T Oy Ty = (20)

The above time constants have clear physical meanings: 7,,, is the mass-discharge time
constant, 7, and 7., are the vessel-wall thermal-transition time constants relevant to the heat
exchanges of the wall to the fluid and the environment to the wall, respectively, 7 isthe fluid
thermal-transition time constant. These time constants actually control the thermal-transition
process of the system.

The casewherewe have an adiabatic boundary at the outside surface of the vessel wall isthe
most important situation. Otherwise, the heat transferred from the environment will balance
the energy loss due to the discharge of the contained mass. The present study concentrates on
this case, which yields

d

©Ouw_ _Tng 4 Tng,, (21)
dr Tw Tw

d@f - Tm @w @f

dr _7'f1—7'_nTml—7'7 (22)
T =0, 04(0) = 64(0) = 1, (23)

where a constant 7 is defined as,

QL{O -1
1 t
n=— 4t 2 (24)

T f Tm

We can decouple the above equations by further differentiating them and obtain a set of
equivalent second-order linear equations:

Aancnt 207 +av: 250/ Nl 1007 1929 NQ v B A B



48 Z.Zhou et al.

for the vessel wall:

C

dz@w Tm NTw \ 0Oy T af“ftCout -1

— 1+ —_— — w::07
dr? Tw 1-7/) dr Tw 1—7 (25)
do,,
T = 07 G)w(o) =1 _(0) = Oa
dr

and for thefluid:

C
% ry— 2\ d ¢4 Cou — 1
®f Tm <1+_n nn> ®f_+'nnC%J 0 @f::O7

1-7 dr Tw 1—7

(26)

do C
r=0, ©;0) =1 d—j(o)z—(oijoout&).

If one of these is solved, the solution of the rest can be obtained from the original equations
given by Equations (21) to (23).

The present study solves Equation (25) for the wall temperature first. Equation (25) has
one pole singularity at = = 1 in the coefficient functions. According to the general theory of
linear ordinary differential equations (e.g. Nayfeh [8]), thetrial solution of Equation (25) may
be expressed as

Op=(1-17)° Zan(l—T)n = Zan(l—T)‘H'n. (27)
n=0 n=0
By substituting Equation (27) and its derivativesin Equation (25), we can have,

Z an(oc+n)(o+n—1—nn,)d—7)°t"2

n=0
> T C,
-y <a tn— ( 2 ot — 1)) an(l— )71 =0, (28)
TL:O TU} C’U,f

Theleading term isthe onewhich correspondsto (1—7)?~? whenn = 0. We can eliminate
the leading term by selecting the unknown constant o in its coefficient, i.e. by imposing,

ago(oc —1—n7y) =0. (29)

Then, let the coefficients of all terms at different order of (1 — 7) be equal to zero, which
yields:
Tm _ (%t _

2 (ot n— (e Cou - 1))
(c+n+1)(c+n—nmy)
It is clear that ap # O, otherwise the solution would become trivial. Thus, we can either set
oc=00roc—1— 971, = 0in Equation (29). Thesetwo seriesforc = 0and o = 1+ 07y,

can be written as

tm (g — (St _

2 (n = (@ Cae - 1))
(n +1)(n —n7m)

(pi1 = an; m=0,1..., 00. (30)

(pi1 = an; n=01...,00 (31)
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and
I (1+7]Tm +n — (%icout - 1))
b1 = 2 v.f by, n=0,1,... 32
TL+1 (nTm+n+2)(n+1) n n 9 9 7003 ( )

respectively. The absolute convergence does hold true for both options in the region of
interest which is 7 € [0, 1]. Therefore, they correspond to the two independent solutions of
Equation (25) and can be expressed as,

o0 o0
Ouwi= Y an(l—7)" and Oy =Y by(l—7)m (33)
n=0 n=0

in which only two constants ao and bp need to be specified.
The solution of the vessel-wall temperature can be derived from,

Oy = C10y,1 + €20y, 2, (34)

where C'; and C', are two constantsrelated to the initial conditions of Equation (23). Because
ap and by are also non-vanishing, they can be combined with Cy and C». Therefore, setting
ap = 1 and bp = 1 wewill not incur loss of generality.

The boundary conditions result in:

C 0u,1(0) 04200 \ T /g
(Cz)z(d(zjfl(m d‘ﬁ;”z(m) <0> &
so that
©0,1(0)  ©w2(0) \ ~ /1
Ou(r) = (Oua(7), Ou2(7)) - ( ®Busg) Wuz (0)) - (o) - (36)

Once 0,,(7) has been solved analytically, the solution of Equation (26) for the fluid
temperature can be obtained simply from Equation (21):

Tw 00y

It is also possible to extend the solution to that for a more general system defined by

Equations (16) to (18). By combining Equation (16) with Equation (17), we can derive a
general second-order linear equation either for the vessel wall or for the fluid as,

d?y dy
—2+<51+ 52>_+ Ny, 22 g (39)
dr 1-7

dr  1-r7 1-71
where 1, and 1> are some known constants composed by the system parameters and
the physical properties. The theory of linear ordinary differential equations ensures that the
general solution of the above equation Y (7) is linearly composed by the general solution

ancnt 207 +av: 250/ Nl 1007 1929 NQ: v E A 7



50 Z.Zhou et al.

of the corresponding homogeneous equation Y () and a particular solution of the original
non-homogeneous equation Y *(7). Fortunately, the original equation leads to

yr=_22 (39)
71

By letting Y = Y — /1 and substituting it in Equation (38), we obtain
Y

ay P2 >£ N -
d72+<ﬁl+1_7 ar "1, =0 0

Following the solution procedure discussed before, we can also find the solution for Y. Aswe
mentioned previously, the general solution is lessimportant than the one we have thoroughly
depicted; thus the details are omitted.

4. Discussionsof the model and the solution

From the structure of the solutions, the present study gives rise to two main interesting points
which can be used to define the minimum possible wall temperature and maximum possible
fluid temperature.

Firstly, the solution for the wall temperature can be proven to be amonotonically declining
function by the following transform:

0u(r) = e ( [

where g isatrial constant and p(7) atrial function. By substituting the abovetrial solutionin
the original differential Equation (25), we obtain

T

p(7) dT) ) (42)

(dﬁ—() +72(7) + g1(r)p(7) + 92(7)> Ou(r) =0, (42)
where
T, T, T Q&LCO -1
91(7) = ﬁ (1—1— 177—w7> and go(7) = ﬁ% (43)

Because ©,,(7) = Oisonly atrivial solution, then

WD) 4 220) + r()ple) + 02(r) = O (a4)
with converted initial conditions 5 = 1 and p(0) = 0.

This functional transform can help us to understand some characteristics of the solution
without solving the derived equation. Generally, to find an analytical solution for the above
nonlinear system is more difficult than for the original linear system, if not impossible.

That the characteristics of ©,,(7) are monotonically declining can be ensured, once it has
been proved that the trial function p(7) is always negative. In order to do that, the above
characteristic equation is re-written as:

dp(7)
dr

= —(p(7) = A7) (p(7) = A2(7)), (45)
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Figure2. (dp/dr) —p— 7 phase diagram of the characteristics of thewall temperature © ., and thefluid temperature
Of with 2 < A1 < 0.

where A\1(7) and A\»(7) are the fixed points of the above equation and obtained from
A2(7) + g1(T)A(T) + g2(7) = 0. (46)

We can easily prove that the two roots of the above equation, A1»(7), are negative. The
characteristics of p(7) aretopologically shownina (dp/dr) — p — 7 phase diagram (Figure 2)
which indicates that A\1(7) is an attractor and \»(7) an expeller. From this phase diagram,
we can verify that, once p(7) becomes negative, it will remain so. Taking into account the
converted initial condition p(0) = 0 and the characteristics of dp(7)/dr, we can prove that
p(7) is aways negative and ©,,(7) isamonotonically declining function when 7 > 0.

The monotonically declining characteristics of the fluid temperature are also preserved
if dO(0)/dr is absolutely negative. Actually, we can prove that at any time 7, both fixed
points of the corresponding characteristic equation similar to Equation (45) always keep the
same sign, so that p(7) will remain negative with a converted initial condition p(0) < 0. This
obviously holdstrue because g»(7) is positive definite. Three typical possible casesare shown
in the (dp/dr) — p — 7 phase diagram of Figures 2, 3 and 4. Moreover, from Equation (37),
we can verify that the upper limit of © is bounded by the corresponding ©,, at an arbitrary
time0< 7 < 1.

Both the wall and the fluid temperatures will drop to a minimum when 7 = 1. By
substituting 7 = 1 in Equations (34) to (36), we obtain:

Ouwmin=0u(1) = C1 = f (T—”Z Tm S cout> , (47)
Tw Tf Cuy
and for the fluid temperature
oL O — 1
1 ut
O smn= (1) + = L2 _ ¢y (1 - ‘”7) . 9
Tm T NTm

The monotonically declining characteristics of ©,, ensure C1 < 1. Therelative difference
of both minimum temperatures can therefore be written as

C 3
R . A@min o @w,min - ®f,min _ TZ?COUI —1
Omin — = ] - T C <l (49)
Ow,min Ow,min —TL;L + (—;ﬁcout -1
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Figure 3. (dp/dr) — p — 7 phase diagram of the characteristics of thefluid temperature © s, A1, may change signs
simultaneously.

o) T

Figure4. (dp/dr) — p — 7 phase diagram of the characteristics of the fluid temperature © s, A2 > 0.

The last equation ensures that A©n,n Will tend to zero if (7,,/7) > 1, which physicaly
corresponds to cv,, Agr > 1o Cy, r. FOr most of engineering gases, (Cp, r/Cy, ) Cout 1S Only
dightly larger than one, but less than two; (7,,/7) ~ 5 could result in Re,;, < 0.1. The
analytical results obtained from Equations (35), (48) and (49) have shown that C'; decreases
monotonously and © ;s min increases monotonously either with «,, increasing or with 7oy
decreasing, respectively. Because (0Ro,,;,/0Cout) > 0 is preserved from Equation (49), an
increase of Cy leads to a bigger difference between the wall and the fluid temperatures.
Physically, it coincides with the fact that the faster the energy-release rate is, the less heat is
transferred to the fluid.

Secondly, the monotonic variations of both wall and fluid temperatures and their minimum
values actually indicate the existence of a minimum possible wall temperature ©,,(7),;,, and
amaximum possible fluid temperature © (7). They correspond to the physical condition
(7m/7¢) > 1. From Equation (49) we can directly obtain an asymptotic approximation as

9(7-) = ew(T)min ~ ef(T)max (50)
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A combination of Equations (21) and (22) leadsto

d_@ n (gﬁ“ﬁcout - 1)

dr 7,;—7}’4—1—7' ©=0 (51)

The integration of the above equation yields a limiting value for the minimum possible wall
temperature and the maximum possible fluid temperature, whence

.
1+

(Cp,f/cv,g)cout_l
) (52)

9(7—) = G)w(T)min ~ G)f(T)max ~ (1 -

The definitionsfor 7, and 77 yield (7, /77) = (M Cp w/M;oCy, ), SO that the heat-transfer
coefficient which is an average parameter in the present study is not involved in such extreme
cases. The equation itself is a declining function, as expected. By setting 7 = 1 into this
equation, we can derive a general safety criterion, which is naturally defined as

1 (Cp,f/Cv,f)Com—l

Again, thiscriterion isrelated neither to the heat-transfer coefficient, nor to the mass-discharge
rate, but to theratio of thermal capacity of the vessel wall vs. thefluid and to the thermodynamic
properties of the fluid. How these parameters control the depressurization process has become
Clear.

Figure 5 shows the effect of heat-transfer coefficient to the vessel wall and the fluid
temperatures with Coyr = 1. As expected, the larger the heat-transfer coefficient, the lower
the vessel-wall temperature and the higher the fluid temperature. Figure 6 describes the effect
of the mass-discharge rate with Coy = 1. Again as expected, the faster the discharge rate,
the higher the vessel-wall temperature and the lower the fluid temperature. Figure 7 isa 3-D
diagramin T — (7, /7¢) — ©,, to show how the safety criterion should be applied.

The model discussed in this paper is only an energy-governed system, because the mass
balance is pre-defined. The total energy conservation should be additionally integrated and
used asacriterion to justify solutions obtained either numerically or analytically. Becausethe
present study employs a lumped-parameter model, the integral form of energy conservation
can bereadily proceﬂaed by the following simple quadratures:

Ay = T(1-0u) + (1~ (1-7)0))
TmTw Cp.z T
+/ O,) dr — 22 C’out/ 0;dr < em, (54)
Toon Ch, g 0

where ¢,,, isthe imposed tolerance for energy conservation.

To have a proper analytical solution of the slow depressurization of a gas-filled vessel due
to mass release or discharge is expected to have an additional importance for code simulation
assessment. It has been recognized that an acceptable numerical solution must be justified by
the combination of (Wullf [9]):

(1) estimates of computing error bounds;
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Figure 5. Effect of heat-transfer coefficient; (7, /75) = 2-1122, (Cp 5 /Cy,5) = 1-5119, 1, = 29347-1782s,
o = 2-1033kgs™t. From the line 0 upwards, linesare 1, 2, 3, 4 for ©,,; and downwards, linesare 1’,2', 3, 4’
for © ¢, with respect to different v, in pairs.

(2) comparisonswith analytical solutions; and

(3) substitution of the resultsinto the original equations.
The comparisons between the numerical calculations and the well-established experi-
mental data are important to evaluate the mathematical modeling of the physical prob-
lem, but are never sufficient to justify numerical simulations and unjustified approxima-
tions, because such comparisonsfail to reveal the compensation of modeling deficiencies
through computing errors.

Conclusions

The present study describesasimplemodel for slow depressurization of atypical high-pressure
gasfilled vessel. Its analytical solution has been derived and the validity was discussed. The
present study of a direct mass-discharge model is believed to exhibit a convincing picture of
such a special engineering problem.

A conservative safety criterion based on comprehensive investigation of the analytical
solution has been established. For the sample system, a reasonable value of the heat-transfer
coefficient ay, should be below 20 Wm—2K ~1, according to the definition of the present paper.
Otherwise, the temperature difference between the wall and the fluid would become negligible
and Equation (52) will not only function as a conservative approximation, but also will depict
the average temperature transients.

We hopethat the present study hasincreased our understanding of the physical phenomenon
of slow depressurization of agas-filled vessel. The analytical solutions and the safety criterion
obtained are useful not only in engineering applications, but also in assessing numerical
simulations or even experimental data.
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Figure 6. Effect of mass-discharge rate; (C,, 7 /Co,s) = 1-5119, 7, = 13102-92'S, v,y = 6-7Wm™2K ™. From
theline O upwards, linesare 1, 2, 3, 4, 5 for ©,; and downwards, linesare1’,2',3,4', 5 for © , with respect to
different riow in pairs.

20

Figure 7. Safety criterion for minimum possible wall temperature ©,, (7)

min®

Nomenclature
Parameter and variable

Ag heat transfer area between the wall and the fluid, m?
Cx  coefficient defined by Equation (14) to correlate the kinetic energy with the flow enthal py, dimensionless
C,  specific heat at constant pressure, Jkg=* K =*
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C,
Co
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Eou
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TOT >R MR TRy

Q)
3

Z.Zhou et al.

specific heat at constant volume, Jkg=t K 1
coefficient to correlate To With (1), dimensionless
energy, J

energy release rate due to mass discharge, Js
mass, kg

mass discharge rate, kgs™
trial function defined by Equation (41), dimensionless

system pressure, N m™2

position vector in space, m

relative dimensionless temperature difference defined by Equation (49)
temperature, K
time, s

fluid velocity, ms™
volume, m*

—1

1

1

dimensionless temperature of agenera system defined by Equation (38)

heat transfer coefficient, Wm™2 K1

roots of the characteristic Equation (46)

density, kgm~3

dimensionless temperature

dimensionless time (or time constant, )

convergence tolerance of energy conservation applied in Equation (54)

Subscript and symbol

crit
f
H
m

criterion

fluid

hesat transfer surface

discharging mass flow

maximum

minimum

wall

flowing out

initia value

interface to the environment

difference

average value of function ¢, ¢ = T, or Ty, or ps
asymptotic value of function ¢, ) = ©,,,0r O, 0orY’
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